

Renewable Energy Transmission Initiative Phase 1A Work Group Meeting 4

Black & Veatch

Phase 1A Work Group

February 21, 2008

Agenda

- Actions Taken Last Meeting
- Carry-over items from 2/14/08 meeting
 - Resources included in base case
- Economic assumptions to support resource valuation
- Resource valuation methodology

Actions Taken Last Meeting

- Tax Incentives:
 - Base Case: Existing tax credits will exist through 2020
 - Model will have ability to toggle tax incentives in each year
- CA Demand and RPS Requirements
 - Demand: CEC IEPR forecast for state loads
 - RPS Requirement: 20% by 2013, 33% by 2020 for all entities
 - CSI Assumptions
 - 3000 MW installed
 - ½ of installed CSI capacity will be available to utilities for RPS compliance (approx. 0.7% of CA demand)

Assumptions

- Financial assumptions for use in modeling
- Renewable energy incentives
- Renewable energy demand
- Transmission
- Economic assumptions to support resource valuation

Renewable technology-specific assumptions

1 week

Today

1 week

Methodological Issues

Resource assessment

1 weeks

Project identification, characterization and screening

2 weeks

CREZ identification, characterization and economic ranking

2 weeks

Treatment of existing and short-listed contracts and transmission queue

Today

Technology development

1 week

Resource valuation

Today

Supply curve creation

Treatment of existing contracts, short-listed contracts and transmission queue

- We need to establish a RETI Base Case generation projects assumed to be "built"
 - Impacts RPS demand forecast (RETI "net short")
 - Impacts Project Identification
 - Impacts Transmission Availability

California RPS Target

CONCEPTUAL - FOR EXAMPLE ONLY

Existing Resources + CSI

CONCEPTUAL - FOR EXAMPLE ONLY

What other Resources to Assume are "Existing"?

CONCEPTUAL - FOR EXAMPLE ONLY

Renewable Generation Included in RETI

- "Existing" Resources in the Base Case
 - Existing projects
 - Under-construction projects
 - Projects with all three of: PPA, siting approval, Interconnection Agreement
- Potential Resources with near-term Commercial Interest (an expected on-line date has been identified, 03/08)
 - PPA (approved, pending)
 - Short-listed projects
- Additional Potential Resources, but no pre-defined on-line date
 - Proposed projects with no PPA
 - ISO queue projects
 - All other resources

Same criteria used for California and non-California resources

Transmission Included in the Base Case

- Existing transmission
- Transmission projects under construction
- Transmission projects approved by all necessary regulatory agencies (FERC, CEC, CPUC, CAISO, etc.)

Same criteria used for California and non-California transmission projects

Resource Valuation Methodology - Economic assumptions to support resource valuation

- Valuation is a way to measure disparate resources consistently.
 Valuation is designed to identify:
 - Lowest cost renewable resources

<u>and</u>

- Highest value renewable resources
- Values will be used to:
 - Develop resource supply curves
 - One of criteria used to develop and rank CREZ's

The proposed RETI valuation methodology is generally consistent with the process utilities use to procure renewable resources

Resource Valuation Methodology

Ranking Cost = Costs - Value

Costs

Generation Cost
+
Transmission Cost
+
Integration Cost

Value

Energy Value + Capacity Value

Generation Cost

- Levelized Cost of Energy (LCOE) \$/MWh
 - Calculated using a pro forma cash flow model for each project
 - Model is consistent with that used by the CPUC for MPR calculation

Technology – Specific Assumptions					
Capital Cost	Incentives				
Fixed O&M	Net Plant Output				
Variable O&	M Capacity Factor				
Fuel Costs	Economic Life				
Heat Rate					
General	Discount Rate				

Inflation

Transmission Cost

- Levelized Cost of Transmission (LCOT) \$/MWh
 - Calculated with economic model consistent with that used by California IOUs

Fixed Costs

- Resource interconnection costs
- Network upgrade costs
- Trunk line costs

Variable Costs

- Transmission access / wheeling charges
 - Assume CAISO charges for all projects
 - Pancake wheeling rates for out-of-state resources
- FTR/CRRs no cost / value assumption

Integration Cost

- Integration cost will be neglected for Phase 1A
 - CEC has not adopted integration values
 - CAISO identifies integration requirements but not cost

May be revisited in RETI Phase 2

Energy Value

Energy value = (resource generation x zonal, T.O.D. market price), where:

- Market Price hourly forecast (2008-2020) using commercially available production cost model
- Zonal prices energy priced in zone where resource is located (15 zones):
 - 8 in California, 7outside California
- TOD factors based on WECC trade periods
 - Super-peak
 - On-peak
 - Off-peak

Price Zones						
N. California (NP15)	Imperial I.D.	N. Nevada				
C. California (ZP26)	Imperial V NG	S.Nevada				
SCE	CA/OR Border (COB)	Palo Verde				
LADWP	Pacific Northwest	Arizona				
SDG&E	British Columbia	N. Baha (Mex.)				

Capacity Value

Capacity value =(Resource availability * Annual value of capacity),

where:

- Resource Availability projected average resource generation during 12:00 6:00 p.m. period (all months)
 - Consistent with current Resource Adequacy practice
- Annual value of capacity fixed carrying costs of the gas turbine

(Capital Costs, Fixed O&M, fixed charges)

Example:

If the fixed costs of a GT = \$128/kW-year, the value of different renewable resources would be...

Resource	12:00-6:00 CF (%)	Cap. value (\$/kW-year)
Solar (1)	41	52.48
Solar (2)	33	42.24
Wind (1)	38	48.64
Wind (2)	24	30.72
Bio	87	111.36
Geo	93	119.04

Resource Value Example- Energy and Capacity

Conceptual - For Example Only!

		Wind		Solar		Biomass
Energy Component						
Marginal Energy Value Forecast (\$/MWh)						
Day		\$85		\$85		\$85
Night		\$50		\$50		\$50
.		Ų C		Ų O O		Ų.
Average Production per Period (MWh/yr)						
Day		1,000		3,000		1,500
Night		2,000		-		1,500
Total		3,000		3,000		3,000
lotai		3,000		3,000		3,000
Annual Value of Energy (\$/yr)						
Day	\$	85,000	\$	255,000	\$	127,500
Night	\$	100,000	\$	233,000	\$	75,000
Total	\$	185,000	\$	255,000	<u>φ</u> \$	
Total	Ф	165,000	Ф	255,000	Ф	202,500
Average Energy Value (\$/MWh)	\$	61.67	\$	85.00	\$	67.50
Average Energy value (\psi/\text{invitty})	Ψ	01.07	Ψ	03.00	Ψ	07.50
Canacity Component						
Capacity Component		35%		35%		90%
Capacity Component Annual Capacity Factor		35%		35%		90%
Annual Capacity Factor						
Annual Capacity Factor Capacity Credit		25%		90%		100%
Annual Capacity Factor Capacity Credit Simple Cycle NG Capacity value, \$/kW-yr		25% \$100		90% \$100		100% \$100
Annual Capacity Factor Capacity Credit		25%		90%		100%
Annual Capacity Factor Capacity Credit Simple Cycle NG Capacity value, \$/kW-yr	\$	25% \$100	\$	90% \$100	\$	100% \$100
Annual Capacity Factor Capacity Credit Simple Cycle NG Capacity value, \$/kW-yr Capacity Value, \$/kW-yr	\$	25% \$100 \$25	\$	90% \$100 \$90	\$	100% \$100 \$100

Thank You!

Ryan Pletka

pletkarj@bv.com

Tel: 925-949-5929

Ric O'Connell

oconnellrm@bv.com

Tel: 925-949-5914

Tim Mason

masont@bv.com

Tel: 925-949-5943